Introduction

Belden® paired cable products are manufactured in a variety of gage sizes, dimensions, insulation materials, shielding configurations, and jacketing materials including Plenum and High-Temperature versions to meet the technical requirements of many different types of systems.

Paired cables allow balanced signal transmission, which results in lower crosstalk through common mode rejection. Due to the improved noise immunity of twisted pairs, they generally permit higher data speeds than multi-conductor cables.

As an aid to proper cable selection, both the suggested working voltages and the maximum temperature ratings are indicated for each applicable paired cable selection.

Most of our paired cables are available from stock. Many of these are available off the shelf from distributors. If you have a new or unusual application or you cannot find a paired cable in this catalog section that meets your technical requirements, contact Technical Support at 1-800-BELDEN-1.

Paired Cables Packaging

Belden's unique UnReel® cable dispenser is available for many of the paired cable products listed in this section. The letter "U" before the specified put-up length denotes UnReel packaging.

Individually Shielded Pairs with Overall Foil/Braid Shield Low-Capacitance Computer Cables for EIA RS-232, EIA RS-422, and Digital Audio Applications

Description	Part No.	UL NEC/ C(UL) CEC Type	No. of Pairs	Color Code	Standard Lengths		Standard Unit Weight		Nom. DCR		Nominal OD		Nom.	Nom.	Nom. Capacitance			
					Ft.	m	Lbs.	kg	Cond.	Shield		mm	mip.	Vel. of Prop.	pF/ Ft.	pF/ m	pF/ Ft.	pF/ m
24 AWG Stranded (7x32) TO					idually l	Beldfoil [®]	Shield	led + O	verall Beldf	oil (100% C	overa	ge) + 7	ΓC Bra	id Shi	eld (65	5%) •	Drain	Wire⁴
Datalene® Insulation UL AWM Style 2493 (60°C) VW-1 Z-Fold® A24 AWG stranded TC drain wire	8168	NEC: CM	8 8	See Chart 3	100 500	30.5 152.4	10.8 61.5	4.9 28.0	24.0Ω/M′ 78.7Ω/km	Individual: 18.0Ω/M′	.479	12.17	100	78%	12.5	41	22	72.2
		CEC: CM		(Tech Info Section)	1000	304.8	115.0	52.3		$59.1\Omega/\text{km}$ Overall: $3.0\Omega/\text{M}'$ $9.8\Omega/\text{km}$								
	8170	NEC: CM CEC: CM	10	See Chart 3 (Tech Info Section)	100 500 1000	30.5 152.4 304.8	18.0 83.0 164.0	8.2 37.7 74.5	24.0Ω/M′ 78.7Ω/km	Individual: $18.0\Omega/M'$ $59.1\Omega/km$ Overall: $2.7\Omega/M'$ $8.9\Omega/km$.584	14.83	100	78%	12.5	41	22	72.2
	8175	NEC: CM CEC: CM	15	See Chart 3 (Tech Info Section)	100 500 1000	30.5 152.4 304.8	22.6 107.5 210.0	10.3 48.9 95.5	24.0Ω/M′ 78.7Ω/km	Individual: $18.0\Omega/M'$ $59.1\Omega/km$ Overall: $2.5\Omega/M'$ $8.2\Omega/km$.665	16.89	100	78%	12.5	41	22	72.2
	8178	NEC: CM CEC: CM	18	See Chart 3 (Tech Info Section)	100 500 1000	30.5 152.4 304.8	24.6 117.0 238.0	11.2 53.2 108.2	24.0Ω/M′ 78.7Ω/km	Individual: $18.0\Omega/\text{M}'$ $59.1\Omega/\text{km}$ Overall: $2.6\Omega/\text{M}'$ $8.5\Omega/\text{km}$.686	17.42	100	78%	12.5	41	22	72.2
	8185	NEC: CM CEC: CM	25	See Chart 3 (Tech Info Section)	100 500 1000	30.5 152.4 304.8	32.3 160.5 356.0	14.7 73.0 161.8	24.0Ω/M′ 78.7Ω/km	Individual: $18.0\Omega/M'$ $59.1\Omega/km$ Overall: $2.4\Omega/M'$ $7.9\Omega/km$.822	20.88	100	78%	12.5	41	22	72.2

DCR = DC Resistance • TC = Tinned Copper

^{*}Capacitance between conductors.
**Capacitance between one conductor and other conductors connected to shield.